
May/
June
2011

18

A Parachute For Your Java Investment
Migrating a J2EE (Oracle/BEA’s WebLogic® Server) based application
to a NonStop® Java Server Pages (NSJPSP V6.0) based application
Jürgen Depping

Abstract
The article describes how a J2EE Oracle

WebLogic® based application was ported
to a NSJSP run time environment. It starts
out with a historical overview followed by a
short discussion why porting could not be
avoided. Next is a comparison between the
two run time environments pointing mainly
at advantages and disadvantages of NSJSP.
The technical requirements, like project
architecture, communication, type of J2EE

beans and JMS are described and how solutions were
found for the NSJSP environment. The article concludes
showing the project results, including the investment
protection and gives an idea about porting cost.

Project History
After evaluating requirements and objectives for an

appropriate run time environment, our customer decided
in 2004 to modernize his applications using Java on the
NonStop® Server platform.

After delivering a series of individually shaped
workshops, the customer finally decided for CommitWork’s
OmnivoBase development framework on top of a J2EE
App Server (BEA’s WebLogic® Server (WLS)) run time
environment.

In 2004 BEA WLS Release 8.1.2 was available for
NonStop® Servers. This App Server was viewed as a strategic
product by HP, since the development of a “home grown”
App Server had been cancelled. At this time BEA’s WLS also
was the market leader within the Java App Server market for
Open Systems.

The main reasons for using an App Server could be
seen in the high level of standardization and the extreme
bandwidth of possibilities for applications. The most
important promise was and still is to provide the highest level
of portability between different server platforms.

The most important criteria supporting the customer’s
decision could be found in the usage of Web Services for
integration with SAP applications and in the parallel usage
of a protocol for a performant coupling with Rich Client
applications. Other decision criteria were high scalability as
well as high availability of the App Server. Traditionally those
features were occupied by Pathway, the legacy transaction
manager for NonStop® systems, and the customer required
them with the same quality for a new run time environment.

Based on the decision for OmnivoBase and BEA’s WLS,
several development projects were launched and finally set
in production successfully.

During these projects some weaknesses of BEA’s WLS
8.1.2 became obvious, known bugs which were already
fixed by BEA in WLS Release 9.2. Later on, this version
has been certified by BEA/Oracle for HP NonStop
Integrity Systems."

At the end of 2008 BEA’s takeover by Oracle was
finalized. After this it is not clear if HP’s NonStop® division
decided or was forced to by Oracle to let the porting
contract expire for future ports of newer WLS releases.
Up to this date there is no HP announcement for either
to support a newer WLS release on NonStop® Servers,
nor to provide any other App Server platform. As WLS is
becoming more and more a dead end road on NonStop®
Servers, our customer found himself in a situation to react.

At this point the customer had invested a lot of efforts and
money in using technologies for to deploy Java applications
on NonStop®. Because of the extraordinary architecture and
the other advantages of the OmnivoBase framework almost
all of these investments could be preserved.

As an alternative run time environment for Oracle’s
WLS, HP’s NonStop® division has developed and
integrated a combination of popular Open Source
software, mainly a modified version of Apache’s Tomcat™,
called NonStop® Java Server Pages (NSJSP). Since in this
environment Tomcat™ is embedded in the proven Pathway,
Tomcat™ inherits Pathway’s great advantages and is also
integrated with HP’s ITP Webserver.

Our customer accepted NSJSP as a valid alternative
for Oracle WLS and started porting the existing
Java applications. The following report deals with
the porting challenges and takes a closer look at the
selected porting approaches.

Middleware Stack of the existing projects
In order to understand all requirements for the new

middleware, the used architecture has to be presented.
In all projects OmnivoBase represents the highest

level of middleware stack components. It embeds the Java
programs representing the customer’s application. It forces
the concept of Client-Server program pairs and provides a
lot of additional comfort functions. These are functions like
Authorization, Menu-System, Rights for specific Dialogues,
Logging, Client control, Master Data Management and a
broad collection of supporting object classes.

On the client side a dialogue consists of three different
layers. Java Swing elements are used for the GUI presentation.
Typically GUI builders like JBuilder®, Netbeans® or Google
WindowBuilder are used. The GUI builder allows defining
and setting features of text fields, description fields, tables and

Jürgen Depping is a co-
founder of CommitWork
GmbH. He is responsible for
the Java development at
CommitWork. Since 2004 he
is the head of the
GTUG Java SIG and is Co-
Moderator of the Connect
Java SIG.

The
Connection 19

www.connect-community.org

other elements like for example drop down menus by using
a WYSIWYG editor. While working with a chosen editor,
source code is generated automatically. This source code is
different for every single GUI Builder. In order to minimize
dependencies, the so called “Dialogue Behavior” was put into
a separate Java class. This layer is called GUI behavior. The
decision to separate these specific functions into different
layers was necessary to allow customers exchanging the
GUI Builder even during the course of a distinct project. So
changing the GUI Builder was just an easy task.

Another separate layer within OmnivoBase‘s Client
module is strictly designated for Server Communication.
Especially this architectural approach (having every
function separated in an extra layer) now allows an easy
port to a Tomcat™ based run time environment.

On the server side similar stack components can be
found. Client communication connects to a “Stateless
Session Bean”. Finding the appropriate Bean is provided
by the “Naming Service” of the App Server (JNDI). In a
fault tolerant J2EE App Server environment a cluster of
App Server instances exists. Finding the right instance
is accomplished thru the so called “Business Objects
Locator”. Because of performance reasons previously used
“communication stubs” are cached within OmnivoBase by
the Business Object Locator.

In all projects only “Stateless Session Beans” have been
used. A J2EE App Server also provides several other Beans
like “Stateful Bean”, “Message Driven Bean” or “Entity Bean”.
The following text takes a closer look at those Beans.

A Stateful Bean is entitled to manage context data, so
Client-Server interactions coming later can have access to
this context data. This requires that each and every Client
has a Stateful Bean associated. The result is an extreme usage
of App Server resources, if most of the application dialogues
would use Stateful Beans. In addition, context would have
to be replicated in an App Server cluster environment.
Therefore the use of Stateful Beans had to be avoided.

Message Driven Beans are typically used in message
oriented applications. Messages can be queued by the
standardized Java Messaging System (JMS) and are then
forwarded to a Message Driven Bean. In the present project
cases JMS was only used for Client-Client communication.

Within Java applications Stateless Session Beans
are treated like capsules, responsible for the following
functions: communication, transaction handling and
forwarding of Business Methods. The specific business logic
resides in other Java classes. Therefore Stateless Session
Beans only provide a very limited collection of Methods.

For communication purposes with exiting Pathway
legacy servers (Cobol and C) our specific customer is
using his own homemade Java to Pathway object classes.

Entity Beans for accessing the databases were explicitly
abandoned, because their features were not covering real
life project needs. Only the very latest App Server versions
are providing the new Java Persistence APIs (JPA).

The customer is using NonStop® SQL/MX as the primary
database. SQL/MX tables are accessed directly thru the
genuine database engine while SQL/MP tables are accessed
via database aliases using the SQL/MX engine. A homemade
DB generator supports database programming by generating
DB object classes including standard access methods and
transport classes for the Client-Server exchange of data.
These generated classes could also be used for implementing
extended queries. The OR mapper Hibernate was evaluated
as an alternative, but was finally rejected because of its
different database programming approach.

As a result from looking at the given situation, the porting
project had to face 2 major challenges:

1. Exchanging the „Business Object Locator“ and the

figure 1: OmnivoBase in a J2EE Environment

figure 2: OmnivoBase in a NSJSP Environment

continued on page 42

May/
June
2011

42

A Parachute For Your Java Investment
continued from pg. 19

communication layer
2. A different JMS (Java Messaging System) for the

Client-Client communication

Exchange of Communication layer
Web containers like Tomcat™ provides fewer

communication features compared to a fully fledged App
Server. Additional Open Source software is available to
compensate. Non standardized Binary Protocols could be
used as well as the so called Spring™ Framework.

Because of the desire for independence of Web
services, Apache’s Axis2™ was evaluated.

Axis2™ created problems with the so called “Exception
Handling”. It is used in Java programs for returning
error situations. Historically server functions produced
a return value, capable of indicating errors. For Java and
also for C++, Exception Handling is the option of choice
for reporting error conditions. In an error situation an
exception is returned without limiting other returns from
methods. Therefore a method can return several exceptions.

This desired Exception Handling concept could not be
implemented by using Axis2™. The result would have been
a much higher porting effort.

Looking for alternatives finally led to Apache’s CXF
Web services. CXF was selected as the best choice and it
showed later much better performance values than Axis™.

Exchange of the Client Business Object
Locator

App Servers are using the JNDI Naming services, Web
services are addressed thru URLs.

Within OmnivoBase the JNDI Naming service is not
invoked directly, the address detection is encapsulated
within the Business Object Locators instead. This concept
enables supporting cluster environments and switching
between several servers in case of a failure.

In the process of exchanging the Business Object
Locators, the interface was kept the same. The different
behavior of Web Services was moved into object classes of
the Business Object Locators. For the application project
porting, no additional effort was necessary.

The Application Server Remote Interfaces – created by
“xdoclet” – could be used with CXF without any changes.
Only for the “cxf-servlet.xml” file – every single Bean
had to be filled in separately – data had to be entered
manually. Nowadays with new dialogues this process is
covered automatically by the OmnivoBase wizard.

Exchange of Server Beans
Server Beans in combination with the App Server were

created with “xdoclet. Having this creation process in place,
the features of Beans were defined via Meta Comments.

Those Meta Comments could be preserved in the object
classes or they have been removed during a rework process.

Because of the abstract declaration of the “Application
Server Beans”, some rework had to be performed on them.
In addition the “Implement Command” had to point to
the “CFX Remote Interface”. The methods required by the
Interface Session Bean could be removed. For “Session
Context” control, a complementary object class from
OmnivoBase could be used.

Only “Bean Managed Transactions” (BMT) and
no “Container Managed Transactions” were used.
Therefore transaction clauses were set traditionally by the
programmer and were not left up to be set by the container.
This approach allowed a simple porting of transaction
handling to the Tomcat™ (NSJSP) environment.

In addition every Bean had to have an entry in the
“cxf-servlet.xml” file.

By now it should be obvious, that only very few
changes were necessary on the Server side.

Exchanging Interfaces made adaption necessary
During the exchange process for existing interfaces

a specific challenge popped up: CFX returned a “null”
value within the array instead of an empty array. But
the programs expected an array with zero entries. This
different behavior had to be adapted within the programs.

The objects which had to be ported had to be restricted
to typical Web services features. The transport classes must
contain “Setter”- and “Getter” methods for each attribute.
They also require primitive data types, arrays or objects, built
within a complementary approach. Only in a few exceptions,
transport classes had to be modified accordingly.

Additional activities
Each of the 20 application projects had to have an

adapted project structure and the „Build Scripts” had to
be customized.

The previously mentioned changes were also necessary
for OmnivoBase internally and a few new utility object
classes had to be introduced for the projects.

The Oracle WLS specific Time Services were replaced
by proprietary implementations within OmnivoBase.

An alternative for J2EE JMS
While App Servers provide a built in JMS (Java

Messaging System), Tomcat™ is missing this kind of
functionality. In the customer projects JMS was only
used for Client-Client communication. “Message Driven
Beans” were not used at all.

Exchanging messages between Control Stations to
notify about changes in the customer’s production process
is an example for Client-Client communication. Also
administrators can use this feature for controlling Clients.
For example messages can be sent to Clients in order to
check the version of the Client application or to shut down
the Client application remotely. In both cases Client-

The
Connection 43

www.connect-community.org

Client JMS communication is involved.
Within the Tomcat™ environment a JMS replacement

was built by using Apache’s ” Active-MQ”. NonStop®
features were used to create an environment for
ActiveMQ™ by configuring it as a generic process. When
the JMS replacement system fails, it will be restarted
automatically. From the application project point of view
no changes were necessary, because corresponding object
classes were customized within OmnivoBase.

Advantages and Disadvantages of using NSJSP
Performance measurements showed that time used up

for communication has tripled. The reason can be found
in the increased amount of data when communicating.
Web services communication involves user data as well
as a big portion of metadata for description purposes to
be transmitted. The follow up process interprets XML
messages and creates Java objects.

Looking at the whole work within a given service
including database accesses, the communication portion
is fairly small compared to the time elapsed for whole
service. So eating up more time for communication is less
important and is also acceptable for the users. Response
time is typically below 5 sec in 98% of all cases. Exceptions
to this limit are reasonable and are due to complexity and
very high data volumes.

A drawback was the necessary replacement of
JMS (Java Messaging System) by using an additional
technology. But in production this was not visible as a
disadvantage at all.

The App Server provides a sophisticated GUI for
administration in a very high granularity for monitoring
the application and the App Server environment. Here
is NSJSP much simpler and offers fewer options. In the
future optional Open Source software in addition could
eliminate this disadvantage.

One of the major advantages using NSJSP is the
ongoing development process which will continuously
provide new versions of the Open Source software
involved within the Tomcat™ environment. In contrast,
the usage of an App Server on NonStop® was critical in
this respect: only major new releases were certified for
NonStop® and therefore provided for this platform.

Less system resources were required for NSJSP
compared to the resource requirements of an App
Server on the NonStop® platform. This turns out to be
complementary for NonStop®, since JVM (Java Virtual
Machine) on NonStop® can only handle less than one
Gigabyte of memory.

HP’s dedication for supporting the whole NSJSP
environment turns out to be a big advantage over the
support for WLS provided by Oracle: no finger pointing
and the customer always knows whom to contact.

Conclusion
The porting case from WLS to NSJSP did not introduce

any new and unknown obstacles. It finally took 10 days
to migrate those 20 application projects onto the new
middleware. Operation of the new environment was
showing higher stability compared to before. Also the new
JMS replacement system did not bring up any problems.

Exchanging the middleware helped preserving the high
investment in new applications.

Therefore the migration from WLS onto NSJSP was a
big success for this specific customer.

For sure, the shown migration process cannot be
equally adopted for all J2EE App Server projects. But there
are always ways to find appropriate solutions for missing
functionalities. For example, a good candidate could be
the Spring™ Framework, which is already supported by HP
within the NonStop® SASH stack.

